Сборник задач по математике с решениями - А. А. Рывкин, Е. Б. Ваховский 2003
Задачи
Последовательности и прогрессии
Рассмотрим функцию натурального аргумента аn = f(n), где либо n = 1, 2, 3, ..., k, либо n = 1, 2, 3, ..., k, ... . Если при любых натуральных i и j, таких, что i < j, значение аj считается последующим по отношению к аi, то множество значений аn этой функции образует последовательность.
Последовательность обозначают, записывая ее члены аn один за другим в порядке возрастания номера n: а1, a2, а3, ... .
Если номер n принимает значения n = 1, 2, 3, ..., k, то последовательность называется конечной. Если же n = 1, 2, 3, ... (т. е. n пробегает все натуральные числа), то последовательность называется бесконечной.
аn = f(n) называется общим членом последовательности. Если для любых i и j, таких, что i < j, выполняется неравенство аi < аj, то последовательность называется возрастающей. Если при тех же условиях будет аi > аj, то последовательность называется убывающей. Если же при любых i и j, таких, что i < j, выполняется неравенство аi ≤ аj (аi ≥ аj), то последовательность называется неубывающей (невозрастающей).
Последовательность, в которой
аi + 1 = аi + d
при всех натуральных i, называется арифметической прогрессией. Число d называется разностью арифметической прогрессии. Имеют место формулы:
2аn = аn + 1 + аn − 1; аn = а1 + d(n − 1);
где Sn — сумма n первых членов прогрессии.
Последовательность, в которой
ai + 1 = qai
при всех натуральных i, причем q ≠ 0 и ai ≠ 0, называется геометрической прогрессией, а число q называется ее знаменателем.
Для геометрической прогрессии имеют место формулы:
an = a1qn − 1;
a²n = an − 1an + 1.
Вторая формула верна, если q ≠ 1. Бесконечная геометрическая прогрессия, у которой |q| < 1, называется бесконечно убывающей.
Бесконечно убывающая геометрическая прогрессия не обязательно является убывающей последовательностью. Она может быть возрастающей, например, при a1 = −1, q = ½ , а может быть колеблющейся: a1 = 1, q = −½ .
Если для бесконечной последовательности существует конечный предел последовательности ее сумм Sn, т. е. существует
, то S называется суммой всех членов этой бесконечной последовательности.
Для того чтобы бесконечная геометрическая прогрессия имела сумму всех своих членов, необходимо и достаточно, чтобы она была бесконечно убывающей. В этом случае
19.1. Общий член последовательности
Является эта последовательность возрастающей или убывающей?
19.2. Докажите, что если члены ap, aq, ar, as арифметической прогрессии образуют геометрическую прогрессию, то последовательность p − q, q − r, r − s является геометрической прогрессией.
19.3. Докажите, что если положительные числа a, b, с — соответственно m-й, n-й и p-й члены как арифметической, так и геометрической прогрессии, то
ab − сbс − aсa − b = 1.
19.4. Докажите, что если а, b, с образуют геометрическую прогрессию, то
где x > 0, x ≠ 1, а, b, с — различные положительные числа, отличные от единицы.
19.5. Найдите сумму
S = 7 + 77 + 777 + ... + 777...7,
где последнее слагаемое содержит n цифр.
19.6. Докажите, что
где цифра 1 повторяется 2n раз, и цифры 2 и 3 только n раз.
19.7. При каких значениях x и у последовательность а1, а2, а3, где
является одновременно арифметической и геометрической прогрессией?
19.8. Пусть х1 и х2 — корни уравнения x² − 3х + А = 0, а х3 и х4 — корни уравнения x² − 12х + В = 0. Известно, что последовательность х1, х2, х3, x4 является возрастающей геометрической прогрессией. Найдите А и В.
19.9. Решите уравнение
х³ − 7х² + 14х + а = 0,
зная, что его корни образуют возрастающую геометрическую прогрессию.
19.10. В бесконечно убывающей геометрической прогрессии сумма всех членов вдвое больше суммы первых n членов. Найдите произведение первых n членов, если первый член равен √2.
19.11. Найдите трехзначное число, цифры которого образуют арифметическую прогрессию и которое делится на 45.
19.12. Найдите трехзначное число по следующим условиям: его цифры образуют геометрическую прогрессию; если из него вычесть 594, то получится число, записанное теми же цифрами, но в обратном порядке; если цифры искомого числа увеличить соответственно на 1, на 2 и на 1, то получится арифметическая прогрессия.
19.13. Имеющиеся в колхозе комбайны, работая вместе, могут убрать урожай за одни сутки. Однако по плану комбайны возвращались с других полей и вступали в работу последовательно: в первый час работал лишь один комбайн, во второй — два, в третий — три и т. д. до тех пор, пока не начали работать все комбайны, после чего в течение нескольких часов перед завершением уборки урожая действовали все комбайны. Время работы по плану можно было бы сократить на 6 ч, если бы с самого начала уборки постоянно работали все комбайны, за исключением пяти. Сколько было комбайнов в колхозе?
19.14. Три брата, возрасты которых образуют геометрическую прогрессию, делят между собой некую сумму денег пропорционально своему возрасту. Если бы они это проделали через 3 года, когда самый младший окажется вдвое моложе самого старшего, то младший получил бы на 105, а средний на 15 p. больше, чем сейчас. Сколько лет каждому из братьев?
19.15. Три отличных от нуля действительных числа образуют арифметическую прогрессию, а квадраты этих чисел, взятые в том же порядке, образуют геометрическую прогрессию. Найдите всевозможные знаменатели этой геометрической прогрессии.
19.16. Даны два числа а и b. Составим последовательность а, b, a1, b1, a2, b2, ..., аn, bn, ..., каждый член которой, начиная с третьего, равен среднему арифметическому двух предшествующих. Докажите, что
и найдите предел этой последовательности.
19.17. Найдите все положительные значения а, для которых все неотрицательные значения x, удовлетворяющие уравнению
cos [(8а − 3)x] = cos [(14а + 5)x]
и расположенные в порядке возрастания, образуют арифметическую прогрессию.