Сборник задач по математике с решениями - А. А. Рывкин, Е. Б. Ваховский 2003
Решения
Функции и их свойства
17.1. Запишем данную систему в виде
которую решим относительно f(2x + 1) и g(x − 1):
В уравнении (1) осуществим замену переменной: x − 1 = y, т. е. x = y + 1. Тогда
В уравнении (2) сделаем замену: 2x + 1 = z, т. е. x = z − 1/2. Тогда
Теперь мы знаем, что
Подставим эти значения в неравенство
4f(x) + g(x) ≤ 0,
которое требуется решить по условию задачи. Получим
или после простых преобразований:
x + 1 ≥ 0, т. е. x ≥ −1.
Ответ. x ≥ −1.
17.2. Сначала заметим, что
f(x) = x(x² − 6x + 9) = x(x − 3)². (3)
Теперь подставим в (3) вместо x выражение f(x):
f(f(x)) = f(x)[f(x) − 3]² = x(x − 3)²(x³ − 6x² + 9x − 3)². (4)
Уравнение f(f(x)) = 0 имеет корни x1 = 0, x2 = 3, а также корни уравнения
x³ − 6x² + 9x − 3 = 0. (5)
При всех x ≤ 0 значения (6) отрицательны. При всех x ≥ 4 значения (6) положительны. Поэтому все корни (6) лежат в интервале (0, 4). Найдем корни производной функции (6):
y′ = 3x² − 12x + 9 = 3(х² − 4x + 3) = 3(x − 1)(x − 3).
При x = 1 значение y достигает максимума y = 1, а при x = 3 — минимума −3. Следовательно, функция (6) пересекает по одному разу ось Ox на каждом из интервалов (0, 1), (0, 3), (3, 4), т. е. имеет 3 корня. Таким образом, уравнение (2) имеет 5 различных корней.
Ответ. 5.
17.3. Из второго уравнения находим
5πz = π + 2πk, k — целое,
т. е.
z = 1 + 2k/5, k — целое.
Подставим в первое уравнение:
5 · 2x² − 2xy + 1 = (1 + 2k)3y² − 1. (7)
Если y — целое, то 3y² − 1 — целое при всех y ≠ 0. Рассмотрим вначале случай y = 0. Тогда уравнение (7) примет вид
5 · 3 · 2x² + 1 = 2k + 1,
и целых решений y него нет, поскольку при любых целых x слева — четное число, а справа — нечетное. Итак, y ≠ 0. Так как множителя 3 в левой части (7) нет, то это уравнение удовлетворяется только при y² = 1. При y = 1 получим
5 · 2x² − 2xy + 1 = 2k + 1, т. е. 5 · 2(x −1)² = 2k + 1.
Левая часть последнего уравнения будет четным числом при всех целых x ≠ 1. Правая часть — нечетное число. Поэтому есть единственная возможность x = 1, а k = 2.
Получим решение: x = 1, y = 1, z = 1.
При y = −1 придем к уравнению
5 · 2(x + 1)² = 2k + 1,
которое удовлетворяется только при x = −1 и k = 2. Находим еще одно решение системы: x = −1, y = −1, z = 1.
Других решений y системы нет.
Ответ. (1, 1, 1), (−1, −1, 1).
17.4. Неравенство
|x + 2| ≤ x + 2
имеет решение x ≥ −2.
Обозначим
2x − 1 = y, sin πx/2 = z. (8)
Тогда уравнение, входящее в систему, примет вид
(4у + y + 1/y)z + (1 − 2z²) = 3 + 2y²,
а после простых преобразований
2z² − (5у + 1/y)z + 2(1 + y²) = 0. (9)
Дискриминант уравнения (9), квадратного относительно z, равен:
D = (5у + 1/y)² − 16(1 + y²) = 9у² − 6 + 1/y² = (3у − 1/y)².
Поэтому решениями уравнения (9) будут:
z1 = ¼[5у + 1/y − (3y − 1/y)] = ½(y + 1/y), (10)
z2 = ¼[5у + 1/y + (3у − 1/y)] = 2y.
Из (8) следует, что y > 0. Из неравенства, связывающего среднее арифметическое и среднее геометрическое двух положительных чисел, при y > 0 вытекает неравенство: y + 1/y ≥ 2. Однако z = sin πx/2, т. е. |z| ≤ 1. Но
z1 = ½(y + 1/y).
Поэтому одновременно |z1| ≤ 1 и z1 ≥ 1, т. е. имеется единственная возможность z1 = 1, что достигается при y = 1, а следовательно, при x = 1. Подставим значение x = 1 в исходную систему и убедимся, что это ее решение.
Для z2 получим
sin πx/2 = 2x, где x ≥ −2. (11)
При x > 0 решений уравнение (11) не имеет, поскольку тогда 2x > 1, а |sin πx/2| ≤ 1.
Значение x = 0 тоже решением не является, в чем убеждаемся непосредственной проверкой.
Когда −2 ≤ x < 0, решений тоже нет, так как при этих x значения 2x положительны, а значения sin πx/2 ≤ 0.
Ответ. x = 1.
17.5. Первообразная F(x) для функции f(x) = 6х² + 2x + 6 равна:
F(x) = 2x³ + x² + 6х + С, (12)
где константа С будет определена. Соответственно
f′(x) = 12x + 2. (13)
В точке касания x0 > 0,7 должны иметь место следующие соотношения:
т. е. получаем систему
Уравнение (15) после упрощений принимает вид
Из его двух корней x0 = ⅔ и x0 = 1 условию (16) удовлетворяет только второй. Подставляем x0 = 1 в уравнение (14) и находим, что С = 5. Окончательно
F(x) = 2x³ + x² + 6х + 5.
Остается сформировать данное в условии задачи неравенство
которое примет вид
Разложим числитель на множители
и воспользуемся методом интервалов (рис. P.17.5). Ограничение x > 0,7 относилось только к расположению точки касания графиков f(x) и F(x). Здесь его учитывать не нужно.
Ответ. x ∈ (−∞; −1/6) ∪ [½; +∞).
17.6. По условию разность x − y такова, что может быть основанием логарифма. Поэтому возможна замена 1 = logx − y (x − y), а данное в условии неравенство равносильно такому:
Так как (x − y) — основание логарифма, то либо 0 < x − y < 1, либо x − y > 1. Получим совокупность двух систем, которую затем несколько преобразуем, чтобы удобнее было перейти к графическим изображениям:
Последние два неравенства первой системы можно упростить, поскольку имеет место условие x − y > 0. Получим
Решение первой системы показано на рис. P.17.6, а, решение второй — на рис. P.17.6, б, а решение совокупности — на рис. P.17.6, в.
Внимание! Интервалы оси абсцисс (0, 1) и (1, +∞) принадлежат множеству решений. Остальные точки границы ему не принадлежат.
17.7. Найдем решения неравенства
(x − |x|)² + (y − |y|)² ≤ 4 (17)
для каждого квадранта отдельно.
Пусть одновременно x ≥ 0, y ≥ 0. Тогда |x| = x, |y| = y. Неравенство (17) приобретет вид 0 ≤ 4, т. е. оно удовлетворяется при всех x и y из первого квадранта.
Когда x ≤ 0, y ≥ 0, точки (x, y) лежат во втором квадранте и на его границе. Тогда |x| = −x, |y| = y и неравенство (17) приобретет вид
(2x)² ≤ 4, т. е. x² ≤ 1, или −1 ≤ x ≤ 0,
так как мы рассматриваем значения x ≤ 0. Это будет полоса шириной 1, расположенная во втором квадранте параллельно оси Оу (рис. P.17.7).
Аналогично в четвертом квадранте получим полосу шириной 1 параллельную оси Ox.
В четвертом квадранте x ≤ 0, y ≤ 0 и мы получим из (17) неравенство
х² + y² ≤ 1,
т. е. ему удовлетворяют точки четвертого квадранта, лежащие внутри и на границе круга x² + y² = 1.
Нанесем на рис. P.17.7 точки прямой y = −x. Значения, удовлетворяющие неравенству x + y ≤ 0, будут лежать под этой прямой и на ней. Нас интересует площадь фигуры, покрытой штриховкой. Эта фигура состоит из двух прямоугольных треугольников с катетами 1 (в сумме они образуют квадрат со стороной 1) и четверти круга, имеющего радиус 1.
Ответ. 1 + π/4.
17.8. Уравнение прямой, проходящей через точки В и D, имеет вид y = 8 − x, а уравнение прямой AC есть 2y = x + 4. Решая эти два уравнения в системе, найдем x = y = 4, т. е. E(4; 4).
Проведем все построения, описанные в указании II на с. 201 (рис. P.17.8).
Дополнительно проведем ЕL || CK, где L ∈ HK, CK ⊥ HK, F — точка пересечения HK и Оу. Искомая площадь может быть определена так:
SABCDE = SFGCK − SCKD − SELD − SELH + SAFH − SAGB.
Каждый из треугольников — прямоугольный с известными катетами.
Ответ. 36.
17.9. Пусть x + y = u, y − x = v. Тогда
а множество решений этой системы проецируется на прямую u = 2. Другими словами, нас интересуют все значения v, при каждом из которых система неравенств (18), (19) имеет хотя бы одно решение. Пусть u — независимая переменная. Она будет абсциссой, а f(u) — ординатой для исследуемой нами плоскости. Величина v — параметр. График функции f(u) — парабола, если v² − 1 ≠ 0. Она обращена ветвями вверх при v² − 1 > 0 и ветвями вниз при v² − 1 < 0. Отдельно нужно рассмотреть случай v² − 1 = 0.
Итак, перед нами три случая.
1. v² − 1 < 0, т. е. −1 < v < 1. Парабола обращена ветвями вниз. При достаточно больших значениях u > 1 она принимает отрицательные значения. Поэтому в плоскости (u, v) в проекции на прямую u = 2 мы получим интервал −1 < v < 1.
2. v² − 1 = 0. Если v = −1, то f(u) ≡ 2 и отрицательных решений нет. Если v = 1, то f(u) = 12u, где u > 1. Отрицательных значений, удовлетворяющих системе (18), (19), в этом случае тоже нет.
3. Когда v² − 1 > 0, т. е. либо v < −1, либо v > 1 ветви параболы обращены вверх. Правее прямой u = 1 парабола может принимать отрицательные значения в двух случаях:
а) уравнение f(u) = 0 имеет два корня, и при этом абсцисса u0 вершины (u0; v0) параболы превосходит 1, т. е.
После простых преобразований:
Окончательно получим
Система не имеет решений, так как одновременно все три ограничения не удовлетворяются;
б) абсцисса u0 вершины (u0; v0) не больше 1, но f(1) меньше нуля:
После преобразований получим
Обобщим все рассмотренные варианты. Условиям удовлетворяют два интервала значений v, проекции которых в плоскости (u, v) на прямую u = 2 не пересекаются:
v ∈ (−3, −2) ∪ (−1, 1).
Когда мы вернемся к переменным x и y, ситуация не изменится, так как замена
не ведет к изменению расстояний между соответственными точками в старой и новой системе координат.
Основная трудность этой задачи состояла в том, что исследование пришлось вести одновременно в двух плоскостях (u, f(u)) и (u, v). К тому же, в конечном счете, нас интересует третья плоскость (x, y).
Ответ. 2.
17.10. Если x1 и x2 — целочисленные корни данного уравнения, то x1 + x2 = а + 3, откуда следует, что а = x1 + x2 − 3 — целое число. Корни данного уравнения равны
отсюда
т. е.
— целое число. Тогда
а² −2a + 1 = п² + 20, т. е. (а − 1)² − п² = 20,
или
(а − n − 1)(а + n − 1) = 20.
Остается рассмотреть варианты, когда каждая из скобок равна целочисленным множителям числа 20. Начнем со случая
Сложив эти два уравнения, получим уравнение
2a − 2 = 21,
не имеющее целочисленных решений.
Можно сделать более общий вывод: если в правой части других пар уравнений типа (20) и (21) есть один нечетный множитель числа 20, то целочисленных решений y системы аналогичной (20), (21) нет. Остается рассмотреть только случаи
Нетрудно убедиться, что первая и вторая системы приводят к одному значению а = 7, а третья и четвертая — к значению а = −5.
При а = 7 имеем x1 = 3, x2 = 7.
При а = −5 получим x1 = −3, x2 = 1.
Ответ. −5; 7.
17.11. Обозначим x² = y, где y ≥ 0. Получим квадратное уравнение
y² − (1 − 2a)y + а² − 1 = 0, (22)
дискриминант которого D = 5 − 4a.
Если 5 − 4a < 0, т. е. а > 5/4, решений нет.
Если 5 − 4a = 0, т. е. а = 5/4, получим уравнение
y² + 3/2y + 9/16 = 0
с единственным корнем y = −¾. Однако y ≥ 0 и потому решений тоже нет.
Пусть теперь а < 5/4 и D > 0. Тогда уравнение (22) имеет корни:
Рассмотрим сначала случаи, когда один из этих корней равен нулю, т. е.
При а = −1 получим уравнение
y² − 3y = 0, т. е. y1 = 0, y2 = 3.
Поэтому при а = −1 исходное уравнение имеет три корня 0; −√3; √3.
При а = 1 получим
y² + y = 0, т. е. y1 = 0, y2 = −1.
Поскольку y ≥ 0, то при а = 1 остается одно решение x = 0.
Теперь осталось рассмотреть два случая:
y1 > 0 и y2 > 0.
В первом случае нужно решить неравенство
Оно равносильно системе
0 < 5 − 4a < (1 − 2a)²
(слева строгое неравенство, так как имеет место условие а < 5/4), т. е.
0 < 5 − 4a < 1 − 4a + 4a².
Правое неравенство дает нам а² > 1. Таким образом, для y1 > 0 получим
а < −1, 1 < а < 5/4.
Для y2 > 0 получим
Если 2a − 1 < 0, т. е. а < ½, то условие а < 5/4 соблюдается. Поэтому при а < ½ получим, что у2 > 0. Если же 2a − 1 ≥ 0, т. е. а > ½, то учтем условие а < 5/4. Возведя неравенство в квадрат, получим а² < 1, т. е. во втором случае (а ≥ ½) получим ½ ≤ а < 1. Окончательно у2 > 0 при а < 1.
Объединим решения для y1 > 0 и у2 > 0, нанеся их на числовую прямую, учтем результат, полученный для а = 5/4 (рис. P.17.11).
Ответ. При а < −1 уравнение относительно x имеет четыре решения. При а = −1 y него три решения, при −1 < а < 1 два решения, при а = 1 одно решение, при 1 < а < 5/4 два решения, при а ≥ 5/4 решений нет.
17.12. Пусть sin 4x = y. Тогда данное уравнение преобразуется в квадратное
(a + 3)y² + (2a − 1)y + (a − 2) = 0, (23)
где
|y| ≤ 1. (24)
Уравнение (23) имеет решения тогда и только тогда, когда его дискриминант неотрицателен, т. е.
D = (2a − 1)² − 4(a + 3)(a − 2) = 25 − 8a ≥ 0. (25)
Кроме того, нужно обеспечить, чтобы по крайней мере один из корней t1 или t2 уравнения (24) не превосходил по абсолютной величине 1.
Пусть сначала D = 0, т. е. а = 25/8. Тогда
Условие (24), как мы видим, соблюдается, и уравнение sin 4x = −3/7 имеет решение.
Уравнение sin z = −3/7 на отрезке [−π, π] имеет ровно два решения z1 и z2. Если осуществить замену переменной: z = 4x, то отрезок [−π, π] сузится для новой переменной x в четыре раза к началу отсчета и станет отрезком [−π/4, π/4]. Поэтому на отрезке [−π, π] для переменной x разместятся уже не 2, а 8 решений (в силу того, что sin z имеет период 2π, а sin 4x имеет период π/2). Итак, а = 25/8 — одно из искомых нами значений параметра а.
Пусть теперь D > 0, т. е. а < 25/8. Тогда уравнение (23) имеет два действительных решения y1 и y2, такие, что y1 < y2. Если оба значения y1 и y2 попадают внутрь интервала (−1, 1), то каждому значению синуса будут соответствовать два значения переменной z в интервале (−π, π) и восемь значений переменной x = z/4 в том же интервале. Решений будет ровно 8, если одно решение уравнения лежит в (−1, 1), а другое — вне этого интервала (случаи, когда y = ±1 будут рассмотрены отдельно). Конечно, можно перебрать все возможные варианты расположения y1 и y2 относительно интервала (−1, 1). Но это хлопотно и поэтому задачу следует упростить. Нас интересуют все случаи, когда один корень параболы, определяемой левой частью уравнения (23), внутри интервала (−1, 1), а другой вне этого интервала, т. е. парабола
f(y) = (а + 3)y² + (2a − 1)y + (а − 2) (26)
пересекает интервал (−1, 1) в одной и только в одной точке. Это условие равносильно такому
f(−1)f(1) < 0, (27)
т. е. на концах интервала (−1, 1) парабола имеет противоположные знаки. Подставим в (27) значения y = −1 и y = 1. После преобразований получим
а < 0.
При этом условии удовлетворяется и требование D > 0, т. е. требование а < 25/8. Итак, все значения а ∈ (−∞, 0) удовлетворяют условиям задачи, как и найденное ранее значение а = 25/8. Мы не рассмотрели только случаи, когда корни уравнения (23) равны −1 и 1.
Начнем со случая y1 = −1, y2 = 1, т. е. f(−1) = f(1) = 0.
Так как f(−1) = 2, f(1) = 4a, то этот случай невозможен. Невозможен и случай, когда f(−1) = 0, так как f(−1) = 2. Остается последняя возможность: f(1) = 0. Но f(1) = 4a . Поэтому а = 0. Уравнение (23) примет вид
3y² − y − 2 = 0. (28)
Уравнение (28) имеет два корня:
у1 = −⅔ и y2 = 1.
Первому из них уже будут соответствовать два значения z и восемь значений x на отрезке [−π, π]. Сколько соответствует второму, не существенно. Достаточно, что не меньше одного. Поэтому этот случай не дает новых значений параметра а.
Ответ. а ∈ (−∞, 0) ∪ (25/8).
17.13. Через точку на плоскости (x; y) с фиксированными координатами x и y проходит кривая семейства тогда и только тогда, когда существует значение параметра а, удовлетворяющее данному уравнению кривых семейства при этих фиксированных x и y.
Другими словами, если мы запишем уравнение семейства кривых как уравнение относительно а, то оно имеет решение при тех и только тех значениях x и y, при которых через точку плоскости с этими координатами проходит кривая семейства. Поэтому преобразуем исходное уравнение к виду
2a² + 2(x − 2)а + (x − 1)² − y = 0
и потребуем, чтобы дискриминант этого уравнения был неотрицателен
D = −х² + 2 + 2y ≥ 0,
откуда
y ≥ x²/2 − 1.
Это необходимое и достаточное условие того, чтобы через точку (x; y) проходила по крайней мере одна кривая данного семейства.
Таким образом, через все точки (x; y), лежащие вне части плоскости, ограниченной параболой y = x²/2 − 1 (рис. P.17.13), кривые семейства не проходят. Через остальные точки кривые проходят.