ТЕОРЕМА О СООТНОШЕНИЯХ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА - СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА - СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА

Геометрия 7 класс поурочные планы

itle

В результате изучения параграфа 2 учащиеся должны уметь доказывать теорему о соотношениях между сторонами и углами треугольника и следствия из нее; теорему о неравенстве треугольника, применять их при решении задач типа № 236, 237, 238, 239, 240, 243, 244, 248, 249, 250.


Урок 1. ТЕОРЕМА О СООТНОШЕНИЯХ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА

Цели: рассмотреть теоремы о соотношениях между сторонами и углами треугольника, следствия из этих теорем; научить применять эти знания при решении задач.

Ход урока

I. Анализ результатов самостоятельной работы.


II. Изучение нового материала.

1. Изучение нового материала необходимо начать с решения подготовительной задачи (см. рис.).

Дано: ΔМОС; КМ = ОМ; К ∈ МС.

Доказать: 1) ∠1 > ∠3; 2) ∠MOC > ∠3.



Доказательство: 1) Треугольник ОМК - равнобедренный с основанием ОК, поэтому ∠1 = ∠2. Угол 2 - внешний угол треугольника ОКС, поэтому ∠2 > ∠3. Значит, ∠1 = ∠2 и ∠2 > ∠3, следовательно, ∠1 > ∠3.

2) Так как точка К лежит на МС, то ∠MOC > ∠1, а так как ∠1 > ∠3, то ∠MОC > ∠3.

2. Сформулировать и доказать первое утверждение теоремы: в треугольнике против большей стороны лежит больший угол (по рис. 127 учебника).

3. Устно решить задачу № 236.

4. Перед доказательством второго утверждения теоремы (в треугольнике против большего угла лежит большая сторона) напомнить учащимся, какая теорема называется обратной данной, и предложить привести примеры обратных теорем, изученных ранее.

5. Дать возможность учащимся самостоятельно сформулировать утверждение, обратное первому утверждению. На классной доске и в тетрадях учащиеся делают следующую запись:



Теорема

Обратная теорема

Дано (условие)

ΔАВС; АВ > АС

ΔАВС; ∠АСВ > ∠АВС

Доказать (заключение)

∠ACB > ∠АВС

АВ > АС


6. Доказательство обратного утверждения проводится методом от противного. В связи с этим, после того как сформулирована обратная теорема, записаны ее условие и заключение, полезно вспомнить, что при сравнении двух отрезков, например, СД и EF, возможен один и только один из трех случаев: СД > EF; СД = EF; СД < EF. Поэтому если мы предполагаем, что СД не больше EF, то возможны два случая: либо СД = EF, либо СД < EF. После этих предварительных рассуждений учащимся легче понять, почему при доказательстве теоремы, предположив, что АВ не больше АС, мы рассматриваем два возможных случая: либо АВ = АС, либо АВ < АС.

7. Устно решить задачу № 237.

8. Следствие 1 учащиеся доказывают самостоятельно.

9. Следствие 2, выражающее признак равнобедренного треугольника, учащиеся доказывают с помощью учителя.


III. Закрепление изученного материала.

1. Решить следующие задачи (по готовым чертежам):

1) В треугольнике ABC угол С тупой, К - произвольная точка на стороне АС. Докажите, что ВК < АВ.

2) В треугольнике ABC на стороне АС отмечена точка Д так, что ДС = ВС. Докажите, ∠В > ∠A.

2. Решить задачу № 240.


IV. Итоги урока.

Домашнее задание: изучить п. 32; ответить на вопросы 6-8 на с. 89-90; решить задачи № 239, 241.






Для любых предложений по сайту: [email protected]