ПЕРПЕНДИКУЛЯР К ПРЯМОЙ. МЕДИАНЫ, БИССЕКТРИСЫ И ВЫСОТЫ ТРЕУГОЛЬНИКА - МЕДИАНЫ, БИССЕКТРИСЫ И ВЫСОТЫ ТРЕУГОЛЬНИКА - ТРЕУГОЛЬНИКИ

Геометрия 7 класс поурочные планы

itle

Цели: ввести понятие перпендикуляра к прямой и доказать теорему о перпендикуляре; ввести понятия медианы, биссектрисы и высоты треугольника и научить учащихся их строить.

Наглядные пособия: таблица «Медианы, биссектрисы и высоты треугольника»; транспортиры; прямоугольные треугольники.

Ход урока

I. Анализ результатов самостоятельной работы.


II. Изучение нового материала.

1. Введение понятия перпендикуляра к прямой (рис. 55).

Учащиеся должны уяснить, что перпендикуляр АН, проведенный из точки А к прямой а, — это такой отрезок, для которого выполнены следующие два условия: 1) прямая АН перпендикулярна к прямой a (АН ⊥ а); 2) А ∉ а, Н ∈ а.

2. Выполнение практического задания 100.

3. Доказательство теоремы о перпендикуляре к прямой проводит сам учитель по рисункам 56, 57 без записи доказательства этой теоремы в тетрадях.

4. Решение задачи № 105 (устно по готовому чертежу).

5. Введение понятия медианы треугольника (использовать таблицу «Медианы, биссектрисы и высоты треугольника) и построение учащимися медиан треугольника (рис. 59).

6. Введение понятия биссектрисы треугольника и построение учащимися биссектрис углов треугольника с помощью транспортира (рис. 60).

Обратить внимание учащихся на различие между биссектрисой угла (луч, делящий угол на два равных угла) и биссектрисой треугольника (отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны).

7. Введение понятия высоты треугольника (использовать таблицу) и построение учащимися высот в остроугольном, прямоугольном и тупоугольном треугольниках с помощью прямоугольных треугольников (рис. 61 и 62).

У учащихся вызывает затруднение проведение высоты из вершины острого угла в тупоугольном треугольнике, поэтому учитель объясняет построение высот в различных тупоугольных треугольниках.


III. Практическая работа.

Для закрепления навыков построения медиан, биссектрис и высот треугольника учащиеся выполняют практические задания № 101, 102 и 103, а учитель просматривает выполняемые учащимися построения и оказывает необходимую помощь.


IV. Итоги урока.

Выяснить, какими свойствами обладают медианы, биссектрисы и высоты треугольника.

Домашнее задание: изучить пункты 16 и 17; ответить на вопросы 5-9 на с. 50; выполнить на отдельных листочках практические задания № 101, 102 и 103 и сдать учителю на проверку.

Решить задачи:

1. АС - биссектриса ∠A треугольника АВД. Докажите, что ΔВAС = ΔДАС.

2. В треугольнике АСД проведены медианы АЕ, СВ и ДF. Длины отрезков AF, ВД и СЕ соответственно равны 4 см, 3 см и 2 см. Найдите периметр треугольника АСД.

3. DN - высота треугольника MNK; МД = ДК.

Доказать, что ΔМNД = ΔKNД.






Для любых предложений по сайту: [email protected]